

RESPONSIVE SOFTWARE

FRAMEWORK

ARCHITECTURE

"Everything should be made as simple as possible, but not simpler." - Albert Einstein.

Purpose of Document

The purpose of this document is to describe the architecture of our Delphi

Framework. But before we do this we would like to give a brief outline of the events

that led to its development.

Brief History

We were commissioned by a small finance company (5 employees) in 1996 to rewrite

the application they were using to record the details of their clients’ accounts. This

was a DOS-based system that had a number of serious deficiencies (including Y2K

incompatibilities!)

Although most of the commercial work we had done at that time was in C++ we have

always preferred Pascal because of its superior readability when it comes to

understanding coded business logic. Because of our own pleasant experience with

Turbo Pascal and because Delphi was new on the market it became the obvious

choice for the new system particularly as the client had no strong feelings either way.

The new Delphi finance system went into production in early 1997 when we

converted the data from the old system. After some teething troubles (corrupt index,

index out of date etc.) our application settled down to give trouble-free running to

such a degree that the only time we heard from our client was when they wanted a

new feature. In fact a few years passed without us hearing from them at all!

In spite of reports from other developers that Delphi, the BDE and Paradox were

inherently unstable our experience taught us that if we program in a consistent manner

and understand and treat the BDE correctly we can achieve excellent results.

So in 2003 when we were asked to write a complex system for a fish processing

company to track all the fish processed in their plant we again chose Delphi.

However this time we were able to approach the project in a somewhat different

manner having benefited from the lessons we’d learned from the finance company

and also some significant maintenance experience with a number of other business

systems.

What we noticed was this. When developing business applications there are a number

of things that are common to all applications whether it be finance, fish or any other

type of business activity. So once the fish program was completed and operating

smoothly at the processing plant we had an idea.

This idea was to make a copy of the source code from the fish program and remove

from it everything that had to do with fish. This left us with a compilable and fully

functional (albeit limited) business application we called the Framework. (Please note

that this was done with the full knowledge and agreement of the fish processing

company to whom we owe a debt of gratitude!)

Since that time we have added to the Framework a general ledger, cashbook, point-of-

sale screen, document and image repository, HTTP server and the ability to run as a

three-tier client/server application with either the BDE or the Firebird/Interbase

database server. We have also used it to successfully develop customized systems for

a food warehouse, a furniture manufacturer, a jewellery manufacturer and a firm of

consulting actuaries. And it forms the basis of the free Ledger program on our

website, our demo Retail system and the new GenFinII integrated finance system.

(The GenFinII system has now been used to replace the original Delphi finance

system we wrote in 1996.)

Design Philosophy

The basic design philosophy behind the Framework is unashamedly based on the

Cathedral model (Fredrick P. Brooks Jr.) as opposed to the Bazaar model (Eric S.

Raymond). The Framework is intended to provide a reference point around which a

business application of arbitrary complexity can be built while at the same time

achieving the conceptual integrity described by Brooks in his seminal book The

Mythical Man-Month. (We consider this book a must-read for anyone involved in

software development.)

The ultimate goal of the Framework is to allow a business to own its own high-quality

customized software and source code that will serve as a platform on which to further

develop its information systems if it so desires and at the same time avoid being

boxed in by the limitations of proprietary software (or overwhelmed by its

complexity.) This will allow a competent professional analyst-programmer to

effectively meet the needs of a business by working at the code level in direct

response to the business’s changing requirements.

By using a single language in a single application the Framework is able to minimize

the technical complexity associated with building a business application and thereby

free the programmer’s mind to focus on the complexities inherent in the business

problem domain.

Design Details

Passive Database

For the sake of robustness and portability we use only the most basic of database and

SQL features in the Framework. This should allow any SQL-compatible database to

be used with only minor changes. We use Paradox tables and the BDE by default

with an option to convert to Firebird/Interbase should this become necessary either for

the sake of performance or because of the sheer quantity of data being stored.

Variable length textual data is stored by our application in a separate table in the

database that automatically splits it into fixed-length strings. The data for the

document and image repository is stored in binary files in a single folder outside the

database. This means the use of variable length or BLOB data types can be avoided.

Business logic is also handled by the application (client or server) so that no use is

made of triggers or stored procedures.

We believe the use of the advanced features of a database should be a deliberate

design decision taken after a careful consideration of both the costs and the benefits.

Please note however that there is nothing in the Framework that precludes the use of

the advanced features of a database should this become necessary or desirable.

Database Design

Every table in the database created by the Framework uses a 32-bit integer (Paradox)

or a 64-bit integer (Firebird) primary key that contains a database-unique value. We

believe this to be the most flexible and (dare we say it) correct way to design a

database and cannot see any reason why this should not be mandatory when

developing interactive business applications. The fact that it is database-unique

allows the application to manage database records from multiple tables as

polymorphic object collections in memory.

Within the Framework every table has a corresponding class derived from a common

base class named TDatabaseObject. This base class contains all the virtual methods

for generic handling of database tables including the loading of data from and the

saving of data to a table, the streaming of data over a TCP/IP connection and the

restructuring of a table when adding additional fields.

The Framework also includes a class named TDatabaseObjectCollection that is used

to hold collections of objects derived from TDatabaseObject.

Database Access

Data is retrieved from and updated to the database using the generic methods

provided by TDatabaseObject and TDatabaseObjectCollection in addition to a

number of utility functions. The primary key field is used to uniquely identify an

object in memory with a record in the database. Whenever an object is saved to the

database this field is checked and if it has not been set (i.e. it is still zero) it is

assigned a new unique value and a new record is created in the table. If it has already

been set this indicates it is not a new object and the existing record in the table is

updated.

Database Maintenance

The creation of database tables and the addition of new fields to tables is handled

automatically by the Framework application each time it is started. If a table does not

exist it is created. It will also check for the existence of new fields in existing tables

and create these if they do not already exist.

These functions allow for the easy deployment of new versions of an application into

production because the application itself takes care of any database restructuring

required. When adding a new table to the database the programmer simply derives a

new class from TDatabaseObject and provides implementations for the appropriate

virtual methods LoadFromDatabase, SaveToDatabase, LoadFromStream,

SaveToStream etc. that were declared in the base class.

Business Logic

Business logic in the Framework that relates directly to a database table/entity is

coded as a method of the corresponding class derived from TDatabaseObject.

Business logic that is not directly related to a class is coded either as a global utility

procedure or placed within the user interface logic where it belongs.

Single Executable

The Framework compiles to a single executable that is guaranteed to run on any

version of Windows (including 95.) It therefore makes an ideal platform on which to

develop a business application that can be distributed as a package to unknown users

who could be using any version of Windows. The same executable runs in different

modes based on simple command-line parameters supplied at the time the application

is started (via shortcut properties.)

Minimal Dependence on Third Party Components

Apart from the standard Delphi components the only third party component used by

the Framework is QuickReports as distributed with Delphi 6.

Single SDI Window

The main form of the Framework is an SDI window that is visible on a screen

resolution of 800x600. No scaling of controls or fonts is performed under different

screen resolutions in order to simplify the development task. Our experience with

scaling has shown us that it can absorb an inordinate amount of time and should only

be attempted if a client specifically requires it. In most cases we have found that the

standard Windows fonts and control sizes are perfectly adequate for the vast majority

of business applications.

All the data entry screens are treated as separate frame components on the main form

and displayed or hidden as required in response to the user clicking on the navigation

control or pressing a shortcut key. The state of each screen is preserved so the user

can navigate to other screens within the application at the same time as a data entry

operation is in progress.

Navigation Control

A tree view component is used as a navigation control on the left of the main form.

The frames for the data entry screen are made visible or invisible in response to

movements within the navigation tree view. This allows additional entry screens to

be added as required and for related entry screens to be grouped together in a

hierarchical fashion in the navigation control.

Data Entry Screens

The data entry screens are frame components on the main form and are designed to

appear as simple and uncluttered as possible. The normal layout includes a bold

heading line at the top indicating the purpose of the screen and buttons at the bottom

for New, Edit, Cancel, Save and so on. However these could be laid out in any

manner suitable for the application. In the situation where there is a header entity and

associated details in a one-to-many relationship (e.g. an invoice with a list of items)

the details will often be displayed in a grid using a string grid component.

The most significant thing to note about the data entry screens is that no use is made

of the data-aware components. All database access is performed using the generic

methods and utilities provided. This provides a clear separation between the user

interface and the database and allows the latter to be located on a local machine on the

LAN or on a remote computer via a TCP/IP connection with the user interface

unaware of the actual location of the data.

Object Find Screen

A generic object find screen is used to allow a list of objects/records to be displayed

for the user to make a selection. The TDatabaseObject class provides virtual methods

that must be implemented in the derived class in order to specify how an object/record

should be displayed in the object find screen.

Object Maintenance Screen

A generic object maintenance screen is used to allow a list of objects/records to be

displayed for the user to make changes. The TDatabaseObject class provides virtual

methods that must be implemented in the derived class in order to specify how an

object/record should be displayed in the object maintenance screen and how each field

should be edited/updated.

Quick Reports

All reports are created using QuickReports components. A generic object listing

report is used to display a list of objects/records. The TDatabaseObject class provides

virtual methods that must be implemented in the derived class in order to specify how

an object/record should be displayed on this report.

Modal Operation

The Framework application consists of a single compiled executable that runs in any

one of various modes indicated by command line switches. These different modes are

standard mode, client mode, server mode, POS mode, POS offline mode and

conversion mode. Although this may sound complicated it actually has the effect of

simplifying both the development and deployment of an application and creating a

very robust process for supporting the application in a production environment.

Standard Mode

Standard mode is the default mode where the application runs as a stand-alone

application and accesses a Paradox database directly via the BDE. This mode is the

easiest to use when developing the application from within the IDE. It also makes for

a very simple installation procedure when providing a demonstration or packaged

application via the Internet as is the case with the free Ledger program on our website.

The user can just install the application and then run it directly from a single shortcut

on the desktop.

Client Mode (/c)

From the user’s perspective client mode appears almost indistinguishable from

standard mode apart from a subtle but significant difference. On start-up the user will

be prompted to enter the IP address of the computer on which the server application is

running (actually another instance of the same application in server mode,) the port

number the server is using to accept client connections, and the user name and

password.

Once connected to the server the application will function in the same manner as if it

was in standard mode except for a potential delay caused by the speed limitation of

the data connection whenever data is being retrieved from or sent to the database.

Server Mode (/s)

In server mode the main form that is displayed in standard and client modes is hidden.

Instead another form is displayed that provides status information to the user

including the IP address of the computer on which the server is running, the port

number that is used to accept client connections, the port number that is used to accept

HTTP requests, the number of bytes sent to and received from connected clients, the

number of pages/objects supplied in response to HTTP requests and a list of all the

connected clients showing user name, IP address and the date and time the connection

was established.

POS Mode (/p)

In POS mode the application functions as a connected client in the same manner as

client mode. However the main form is not displayed. Instead another form is

displayed that provides the user with a special purpose interface allowing them to

perform specific functions related to a particular task, in this case the recording of a

sale transaction at POS (point-of-sale.) This concept could easily be adapted to any

other situation where the user needs only a limited range of functions in order to carry

out a particular task without giving them access to all the functions provided in client

mode.

If the data connection with the server is lost the application automatically switches to

POS offline mode.

POS Offline Mode (/p /o)

In POS offline mode the application functions as if it were in POS mode but without a

connection to the server. This allows the user to continue using the application to

carry out their task even when there is no communication link to the computer hosting

the server application.

This will only work in a situation where all the data required for the task can be

conveniently retrieved from the server, maintained on the client and transmitted back

to the server when the communication link becomes available and the application is

again operating in POS (connected) mode.

Conversion Mode (/v)

Conversion mode is a special mode used to convert the data stored in Paradox tables

to the Firebird/Interbase database server. This allows for an easy upgrade of the

database when it reaches a size that becomes difficult to manage using Paradox tables.

Peer-to-peer Communications

When developing an application there is often a need to notify other users that an

object has changed in the database. The Framework includes a robust mechanism to

allow the details of an object update or deletion to be notified to all the other active

instances of the application operating in either Standard mode or Client mode.

Data Encryption

When using the Framework in a client/server configuration all data sent or received

over a connection is encrypted using a simple encryption algorithm based on a

sequence of random numbers. This level of encryption is normally all that is required

to prevent recognition of the data by a casual observer.

If necessary it would be quite straightforward to incorporate a more secure encryption

algorithm into the application at the clearly defined points where the data is being

transferred between the client and the server.

User Authentication

When starting the Framework in client mode the user is prompted to login by entering

their user name and password. The corresponding user name and encrypted password

are then retrieved from a table in the database in order to authenticate the user. This

table is maintained via the server application. Invalid login attempts are recorded in a

log file by the server application on the host computer.

Workstation Configuration

The Framework application uses a TWorkstationConfiguration object to manage the

settings that are specific to an individual user or workstation for example the

customized control colour chosen by the user. Additional settings can be easily added

to this object as required.

Global Configuration

The Framework application uses a TGlobalConfiguration object to manage the

settings that have a global effect for example the port numbers used for client/server

and HTTP communications. Additional settings can be easily added to this object as

required.

Application Registration

The Framework provides a mechanism to generate unique registration codes based on

various parameters including the company name, the enabled features of the

application, the number of workstations and the software expiry date. This can be

used to prevent a user from using an application and/or restrict the use of certain

functions until the appropriate licence fees have been paid.

Development Mode

When developing an application it is sometimes convenient to have certain features

perform differently than they would in normal production. For example it is often

helpful to gain direct access to the underlying tables of the database in order to view

or edit the data but giving this access to an end user on a production system could

potentially compromise the integrity of the data. We also like to display the amount

of allocated memory on the title bar of the main form so that we can check constantly

for memory leaks during development.

To accomodate this we have created a special development mode that is enabled by

creating a setting in the Windows registry on the computer being used by the

programmer. This can be switched on and off as required during development and

testing.

Summary

Our main goal in developing the Framework has been to write an entire system

structured in a way that can be easily understood, debugged and verified by a single

programmer allowing them to have total quality control of any customized system in a

production environment.

During the last several years the Framework has proven itself as the basis of a number

of mission critical business systems that continue to provide their owners with

ongoing trouble-free operation. Our experience has led us to believe it could be used

as a platform on which to develop a reliable insurance system, banking system or any

other custom-built enterprise-level business system.

Source Files

Ledger.bmp

POS.bmp

Reports.bmp

Splash.bmp

ARW03RT.ICO

FOLDER01.ICO

GRAPH04.ICO

GRAPH06.ICO

POINT04.ICO

SUN.ICO

Framework.cfg

Framework.dof

Framework.dpr(.res)

Accounts.pas(.dfm)

AccountsCacheUnit.pas

AccountStatementReportFormat.pas

AccountStatementReportUnit.pas(.dfm)

AttachmentCacheManagerUnit.pas

BalanceSheet.pas(.dfm)

BalanceSheetReportFormat.pas

BalanceSheetReportUnit.pas(.dfm)

Base.pas(.dfm)

BaseFrameUnit.pas(.dfm)

BusinessObjects.pas

Cashbooks.pas(.dfm)

CashbooksCacheUnit.pas

CashbookStatementReportFormat.pas

CashbookStatementReportUnit.pas(.dfm)

ChooseString.pas(.dfm)

ClientCommunicatorUnit.pas

CommunicationsManager.pas

CommunicatorUnit.pas

Compress.pas

Config.pas(.dfm)

Controls.pas (Bug fix to Borland’s code)

DatabaseManager.pas

DatabaseObjects.pas

Documents.pas(.dfm)

Entries.pas(.dfm)

FTP.pas(.dfm)

GeneralUtilities.pas

Globals.pas

Graph.pas(.dfm)

GraphReportUnit.pas(.dfm)

HTTPResponder.pas

HTTPServerCommunicatorUnit.pas

HTTPUtilities.pas

IBSQL.pas (Bug fix to Borland’s code)

IncomeStatement.pas(.dfm)

IncomeStatementReportFormat.pas

IncomeStatementReportUnit.pas(.dfm)

Items.pas(.dfm)

Ledger.pas(.dfm)

Main.pas(.dfm)

POS.pas(.dfm)

POSConfig.pas(.dfm)

POSMain.pas(.dfm)

Progress.pas(.dfm)

PromptAccountType.pas(.dfm)

PromptDate.pas(.dfm)

PromptHostNameUserIdPassword.pas(.dfm)

PromptPaymentType.pas(.dfm)

PromptSearchString.pas(.dfm)

PromptString.pas(.dfm)

PromptUserIdPassword.pas(.dfm)

PromptUserNamePassword.pas(.dfm)

ProxyDatabaseCollectionObjectFind.pas(.dfm)

ProxyDatabaseCollectionObjectMaintain.pas(.dfm)

ProxyDatabaseObjectCollectionUnit.pas

ProxyObjectListingReportUnit.pas(.dfm)

ReceiptReportFormat.pas

ReceiptReportUnit.pas(.dfm)

Register.pas(.dfm)

RegistrationInfo.pas(.dfm)

Reports.pas(.dfm)

Sales.pas(.dfm)

SalesManagerUnit.pas

SalesReportFormat.pas

SalesReportFrameUnit.pas(.dfm)

SalesReportUnit.pas(.dfm)

ServerCommunicatorUnit.pas

ServerMain.pas(.dfm)

ServerTest.pas

Splash.pas(.dfm)

Utilities.pas

Sample Code

{***}

{ }

{ Responsive Software http://www.responsive.co.nz }

{ }

{ Copyright (c) 2003-2006 Responsive Software Limited }

{ }

{***}

unit ProxyDatabaseObjectCollectionUnit;

interface

uses

 Classes, DBTables, DB, IBDatabase,

 DatabaseObjects;

type

 TProxyDatabaseObject = class;

 // this is used to provide generic access to any collection of database objects

 // without requiring the objects to be loaded until they are required

 TProxyDatabaseObjectCollection = class

 private

 FDatabaseObjectClass : TDatabaseObjectClass;

 FDatabaseObjectCollection : TDatabaseObjectCollection;

 FProxyDatabaseObjects : TList;

 FDataset : TDataset;

 FCount : integer;

 function GetCount : integer;

 function ObjectLoaded

 (i : integer) : boolean;

 function GetObject

 (i : integer) : TDatabaseObject;

 function OpenLocalDataset

 (SelectionString : string) : integer;

 procedure CloseLocalDataset;

 function GetDatasetRecNoOffset

 (RecNo : integer) : integer;

 public

 constructor Create

 (DatabaseObjectClass : TDatabaseObjectClass;

 DatabaseObjectCollection : TDatabaseObjectCollection;

 SelectionString : string); overload;

 destructor Destroy; override;

 procedure InsertObject

 (Index : integer;

 DatabaseObject : TDatabaseObject);

 procedure DeleteObject

 (Index : integer);

 property Count : integer read GetCount;

 property Objects[i : integer] : TDatabaseObject read GetObject; default;

 end;

 TProxyDatabaseObject = class

 private

 FDatabaseObject : TDatabaseObject;

 FDatasetRecNo : integer;

 FRecNo : integer;

 public

 constructor Create

 (DatabaseObject : TDatabaseObject;

 DatasetRecNo : integer;

 RecNo : integer);

 destructor Destroy; override;

 function DatabaseObject : TDatabaseObject;

 function DatasetRecNo : integer;

 function RecNo : integer;

 function DatasetRecNoOffset : integer;

 procedure IncrementRecNo;

 procedure DecrementRecNo;

 end;

implementation

uses

 GeneralUtilities, Utilities, Globals, IBQuery,

 SysUtils, Dialogs, Controls;

{***** TProxyDatabaseObjectCollection methods *********************************}

constructor TProxyDatabaseObjectCollection.Create

 (DatabaseObjectClass : TDatabaseObjectClass;

 DatabaseObjectCollection : TDatabaseObjectCollection;

 SelectionString : string);

begin

 inherited Create;

 FDatabaseObjectClass := DatabaseObjectClass;

 // if collection supplied then use this and ignore the selection string

 if DatabaseObjectCollection <> nil then

 FDatabaseObjectCollection := DatabaseObjectCollection

 // otherwise create a proxy object collection

 else begin

 FProxyDatabaseObjects := TList.Create;

 if ClientMode then

 FCount := ClientCommunicator.OpenRemoteDataset

 (DatabaseObjectClass,SelectionString)

 else

 FCount := OpenLocalDataset(SelectionString);

 end;

end;

destructor TProxyDatabaseObjectCollection.Destroy;

begin

 // destroy proxy object collection

 DestroyList(FProxyDatabaseObjects);

 if FDatabaseObjectCollection = nil then

 begin

 if ClientMode then

 ClientCommunicator.CloseRemoteDataset

 else

 CloseLocalDataset;

 end;

end;

function TProxyDatabaseObjectCollection.GetCount : integer;

begin

 if FDatabaseObjectCollection <> nil then

 Result := FDatabaseObjectCollection.Count

 else

 Result := FCount;

end;

function TProxyDatabaseObjectCollection.ObjectLoaded

 (i : integer) : boolean;

var

 j : integer;

begin

 for j := 0 to FProxyDatabaseObjects.Count - 1 do

 if TProxyDatabaseObject(FProxyDatabaseObjects[j]).RecNo = i + 1 then

 begin

 Result := true;

 Exit;

 end;

 Result := false;

end;

function TProxyDatabaseObjectCollection.GetObject

 (i : integer) : TDatabaseObject;

var

 j : integer;

 ProxyDatabaseObject : TProxyDatabaseObject;

 DatabaseObject : TDatabaseObject;

 RecNo : integer;

 DatabaseObjectCollection : TDatabaseObjectCollection;

 DatasetRecNoOffset : integer;

begin

 Result := nil;

 // if we are using a supplied collection then

 // just return the corresponding object in this

 if FDatabaseObjectCollection <> nil then

 begin

 Result := FDatabaseObjectCollection[i];

 Exit;

 end else begin

 if (i<0) or (i>=FCount) then

 Exit;

 // look to see if this object is already loaded

 for j := 0 to FProxyDatabaseObjects.Count - 1 do

 begin

 ProxyDatabaseObject := TProxyDatabaseObject(FProxyDatabaseObjects[j]);

 if ProxyDatabaseObject.RecNo = i + 1 then

 begin

 Result := ProxyDatabaseObject.DatabaseObject;

 Exit;

 end;

 end;

 // determine the offset for this record number between

 // the proxy collection and the dataset record number

 DatasetRecNoOffset := GetDatasetRecNoOffset(i+1);

 // load and add the next twenty records to the collection

 // in anticipation that they may be needed

 if ClientMode then

 begin

 DatabaseObjectCollection := TDatabaseObjectCollection.Create;

 ClientCommunicator.LoadDatabaseObjectsFromRemoteDataset

 (DatabaseObjectCollection,i+1+DatasetRecNoOffset,i+20+DatasetRecNoOffset);

 // transfer ownership of objects to proxy collection

 DatabaseObjectCollection.Owned := false;

 for j := 0 to DatabaseObjectCollection.Count - 1 do

 begin

 RecNo := i + 1 + j;

 DatabaseObject := DatabaseObjectCollection[j];

 if not ObjectLoaded(i+j) then

 begin

 ProxyDatabaseObject := TProxyDatabaseObject.Create

 (DatabaseObject,RecNo+DatasetRecNoOffset,RecNo);

 FProxyDatabaseObjects.Add(ProxyDatabaseObject);

 end else

 DatabaseObject.Free;

 if RecNo = i + 1 then

 Result := DatabaseObject;

 end;

 DatabaseObjectCollection.Free;

 end else begin

 for j := 0 to 19 do

 begin

 if not ObjectLoaded(i+j) then

 begin

 RecNo := i + 1 + j;

 if RecNo+DatasetRecNoOffset <= FDataset.RecordCount then

 begin

 FDataset.RecNo := RecNo+DatasetRecNoOffset;

 DatabaseObject := FDatabaseObjectClass.Create;

 DatabaseObject.LoadFromTable(FDataset);

 ProxyDatabaseObject := TProxyDatabaseObject.Create

 (DatabaseObject,RecNo+DatasetRecNoOffset,RecNo);

 FProxyDatabaseObjects.Add(ProxyDatabaseObject);

 if RecNo = i + 1 then

 Result := DatabaseObject;

 end;

 end;

 end;

 end;

 end;

end;

function TProxyDatabaseObjectCollection.OpenLocalDataset

 (SelectionString : string) : integer;

begin

 if Firebird then

 FDataset := FDatabaseObjectClass.OpenIBQuery(SelectionString)

 else

 FDataset := FDatabaseObjectClass.OpenQuery(SelectionString);

 Result := FDataset.RecordCount;

end;

procedure TProxyDatabaseObjectCollection.CloseLocalDataset;

begin

 if FDataset <> nil then

 begin

 FDataset.Active := false;

 if Firebird then

 begin

 if TIBQuery(FDataset).Transaction.InTransaction then

 TIBQuery(FDataset).Transaction.Commit;

 TIBQuery(FDataset).Transaction.Free;

 end;

 end;

 FDataset.Free;

end;

function TProxyDatabaseObjectCollection.GetDatasetRecNoOffset

 (RecNo : integer) : integer;

var

 i : integer;

 ProxyDatabaseObject : TProxyDatabaseObject;

 SelectedProxyDatabaseObject : TProxyDatabaseObject;

 Offset : integer;

begin

 SelectedProxyDatabaseObject := nil;

 // find the proxy object with the record number immediately

 // preceding the one we are about to load

 for i := 0 to FProxyDatabaseObjects.Count - 1 do

 begin

 ProxyDatabaseObject := TProxyDatabaseObject(FProxyDatabaseObjects[i]);

 // ignore any inserted records which do not have corresponding entries

 // in the dataset

 if ProxyDatabaseObject.DatasetRecNo = 0 then

 continue;

 // find the one with the maximum record number not exceeding

 // the one specified

 if (ProxyDatabaseObject.RecNo <= RecNo) and

 ((SelectedProxyDatabaseObject = nil) or

 (ProxyDatabaseObject.RecNo > SelectedProxyDatabaseObject.RecNo)) then

 SelectedProxyDatabaseObject := ProxyDatabaseObject;

 end;

 // return the offset after adjusting for inserted records

 if SelectedProxyDatabaseObject <> nil then

 begin

 Offset := SelectedProxyDatabaseObject.DatasetRecNoOffset;

 // adjust for any inserted records

 for i := 0 to FProxyDatabaseObjects.Count - 1 do

 begin

 ProxyDatabaseObject := TProxyDatabaseObject(FProxyDatabaseObjects[i]);

 if (ProxyDatabaseObject.DatasetRecNo = 0) and

 (ProxyDatabaseObject.RecNo > SelectedProxyDatabaseObject.RecNo) and

 (ProxyDatabaseObject.RecNo < RecNo) then

 Inc(Offset);

 end;

 Result := Offset;

 end else

 Result := 0;

end;

procedure TProxyDatabaseObjectCollection.InsertObject

 (Index : integer;

 DatabaseObject : TDatabaseObject);

var

 RecNo : integer;

 i : integer;

 ProxyDatabaseObject : TProxyDatabaseObject;

begin

 if FDatabaseObjectCollection <> nil then

 FDatabaseObjectCollection.Insert(Index,DatabaseObject)

 else begin

 RecNo := Index + 1;

 // increment all larger record numbers to make room

 for i := 0 to FProxyDatabaseObjects.Count - 1 do

 begin

 ProxyDatabaseObject := TProxyDatabaseObject(FProxyDatabaseObjects[i]);

 if ProxyDatabaseObject.RecNo >= RecNo then

 ProxyDatabaseObject.IncrementRecNo;

 end;

 // add the new object via a proxy object

 ProxyDatabaseObject := TProxyDatabaseObject.Create

 (DatabaseObject,0,RecNo);

 FProxyDatabaseObjects.Add(ProxyDatabaseObject);

 Inc(FCount);

 end;

end;

procedure TProxyDatabaseObjectCollection.DeleteObject

 (Index : integer);

var

 RecNo : integer;

 i : integer;

 ProxyDatabaseObject : TProxyDatabaseObject;

begin

 if FDatabaseObjectCollection <> nil then

 FDatabaseObjectCollection.Delete(Index)

 else begin

 RecNo := Index + 1;

 // remove matching record number and decrement all larger record numbers

 for i := FProxyDatabaseObjects.Count - 1 downto 0 do

 begin

 ProxyDatabaseObject := TProxyDatabaseObject(FProxyDatabaseObjects[i]);

 if ProxyDatabaseObject.RecNo = RecNo then

 begin

 FProxyDatabaseObjects.Delete(i);

 ProxyDatabaseObject.Free;

 end else if ProxyDatabaseObject.RecNo > RecNo then

 ProxyDatabaseObject.DecrementRecNo;

 end;

 Dec(FCount);

 end;

end;

{***** TProxyDatabaseObject methods ***}

constructor TProxyDatabaseObject.Create

 (DatabaseObject : TDatabaseObject;

 DatasetRecNo : integer;

 RecNo : integer);

begin

 FDatabaseObject := DatabaseObject;

 FDatasetRecNo := DatasetRecNo;

 FRecNo := RecNo;

end;

destructor TProxyDatabaseObject.Destroy;

begin

 FDatabaseObject.Free;

end;

function TProxyDatabaseObject.DatabaseObject : TDatabaseObject;

begin

 Result := FDatabaseObject;

end;

function TProxyDatabaseObject.DatasetRecNo : integer;

begin

 Result := FDatasetRecNo;

end;

function TProxyDatabaseObject.RecNo : integer;

begin

 Result := FRecNo;

end;

function TProxyDatabaseObject.DatasetRecNoOffset : integer;

begin

 if FDatasetRecNo <> 0 then

 Result := FDatasetRecNo - FRecNo

 else

 Result := 0;

end;

procedure TProxyDatabaseObject.IncrementRecNo;

begin

 Inc(FRecNo);

end;

procedure TProxyDatabaseObject.DecrementRecNo;

begin

 Dec(FRecNo);

end;

end.

